
 

 
 
 

Journal of Mechanical Science and Technology 21 (2007) 525~535 

Journal of 

Mechanical
Science and
Technology

 
 

 
Numerical Simulation of Auto-Regulation and  

Collateral Circulation in the Human Brain 

Changsung Sean Kim* 

Principal Research Engineer, Samsung Electro-Mechanics Co. Ltd. 
Coporate R&D Institute, Suwon 443-743, Korea. 

(Manuscript Received May 24, 2006; Revised July 27, 2006; Accepted January 10, 2007) 
 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
A novel approach using computational fluid dynamics (CFD) and magnetic resonance image (MRI) is applied to 

model the auto-regulation and blood flow in the human brain. To provide a basic understanding of the auto-regulation 
mechanism in the brain, an anatomical Circle of Willis configuration is reconstructed from subject-specific magnetic 
resonance images using image segmentation methods and grid generation techniques. The three-dimensional unsteady 
incompressible Navier-Stokes equations are solved iteratively using the pseudocompressibility method and dual time 
stepping method. For the efficient simulation of three-dimensional time-dependent flows, parallel computations based 
on a domain decomposition method are performed. A simple auto-regulation algorithm is presented to model the 
dynamic peripheral resistance due to arteriolar contraction and dilatation. The present numerical methods are then used 
to simulate the auto-regulation of blood flow in the realistic Circle of Willis model with geometrical variants. The 
computed results show the correlation between abnormal vascular structures and the auto-regulation mechanism in the 
cerebral circulation.  
 
Keywords: Auto-regulation, Collateral circulation, Human brain, Computational fluid dynamics (CFD), Magnetic resonance image  

(MRI), Circle of willis, Cerebral circulation  
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1. Introduction 

The brain has a unique vascular structure, so-called 
the Circle of Willis, a network of arteries able to 
provide collateral blood flow to both hemispheres. 
There are two paired arteries that supply blood to the 
brain. One pair is the left and right internal carotid 
arteries (ICA) and the other is the left and right 
vertebral arteries. The vertebral arteries are distally 
combined into the basilar artery that ends by dividing 
into two posterior cerebral arteries (PCA). The left 
and right ICA and the basilar artery are connected to 
the Circle formed by a single anterior communicating 

artery (ACoA) and the paired anterior cerebral artery 
(ACA), posterior communicating (PCoA) and 
posterior cerebral (PCA) arteries. A three-dimensional 
model of the idealized Circle of Willis is shown in Fig. 
1. The Circle of Willis sits on the base of the brain 
and its main function is to distribute blood evenly 
throughout the brain. When the flow into the cerebral 
tree is asymmetric, that is, if one of the major afferent 
arteries becomes stenosed or occluded, blood flows 
through the Circle so as to maintain sufficient blood 
to all of the cerebral tissue, termed collateral 
circulation.  

More importantly, in addition to collateral 
circulation, the arterial tree can vary its vessel radius 
dynamically to accommodate temporal changes of the  
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ACA: Anterior Cerebral Artery, ACoA: Anterior Communi-
cating Artery, 
BA: Basilar Artery, ICA: Internal Carotid Artery, MCA: Middle 
Cerebral Artery, 
PCA: Posterior Cerebral Artery, PCoA: Posterior Communi-
cating Artery. 
Fig. 1. A three-dimensional model of an idealized Circle of 
Willis configuration [Kim et. al., 2006]. 

 
perfusion pressure (most notably done by the 
arterioles) and thus maintain the required blood flow. 
This is termed auto-regulation and is an active 
method for delivering the correct blood mass flux to 
the brain. Figure 2 shows an example of the auto-
regulatory response after a sudden drop in perfusion 
pressure. Flow rate begins to increase back toward 
control by decreasing the vascular resistance. 
Cerebral arteries dilate or contract in order to adjust 
the resistance depending on relatively abrupt changes 
in mean arterial pressure. This dilation/contraction is 
accomplished through the expansion/contraction of 
the smooth muscle cells surrounding the arterial 
lumen. The brain auto-regulates blood flow within a 
certain range of perfusion pressure as shown in Fig. 3. 
There is a lower limit of perfusion pressure below 
which cerebral arteries are maximally vaso-dilated 
and blood flow decreases passively with further 
reduction in perfusion pressure. Also, there is an 
upper limit to the auto-regulation range which is 
seldom reached physiologically.  

It is clear that human experiments would be very 
difficult if not impossible to perform in vivo. 
However numerical models have become available 
which can model the cerebro-vascular tree and the 
auto-regulation. Kufahl and Clark (1985) developed a 
one-dimensional finite difference model with distensible 
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Fig. 2. Auto-regulatory response after sudden drop in perfusion 
pressure. 
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Fig. 3. Cerebral auto-regulation curve of blood flow vs. 
perfusion pressure. 

 
vessels for both steady and pulsatile flows in the 
Circle of Willis. Hillen et al. (1988) has provided one-
dimensional models of the Circle of Willis to describe 
the relationship between the flow rate, vascular 
resistance and pressure using Hagen-Poiseuille 
formula. They concluded that the efferent fluxes were 
dependent on the distribution of the efferent 
resistance, and that there was a relationship between 
the mass flux and the anatomical structure of the 
Circle of Willis. Ferrandez and David (2000) and 
Ferrandez et al. (2002) have shown that both arterial 
geometry and the proper functioning of the auto-
regulation mechanism are crucial in determining not 
only the correct amount of blood supply to the brain 
but also in characterising possible “unstable” 
geometric variants of the Circle of Willis. Olufsen et 
al. (2002) used a lumped parameter model to explain 
dynamics of cerebral blood flow response to 
hypotension during posture change.  
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For the purpose of numerical modeling, minor 
arteries such as arterioles and capillaries need to be 
truncated to perform the numerical simulation due to 
computational expense. At the truncated position 
where flow information is not available, equivalent 
outflow boundary conditions are necessary. Lumped 
models utilizing the analogy of arterial networks to 
electric circuits have been used to provide the 
adequate boundary conditions for three-dimensional 
computations (e.g., Quarteroni et al., 2000; 
Formaggia et al., 2002). A vascular bed model was 
adopted to impose pressure boundary conditions at 
outflow boundaries (Cebral et al., 2000). Also 
Ferrandez et al. (2002) have defined a novel boundary 
condition using a control theory in order to simulate 
the peripheral resistance of the cerebro-vascular tree 
and its auto-regulation function.  

 
Specific shapes and connections of the brain 

arterial tree vary in the human population (Alpers et 
al., 1959). Three-dimensional reconstruction 
techniques have been used to obtain the subject-
specific vasculature from magnetic resonance 
imaging (MRI), magnetic resonance angiogram 
(MRA), and computed tomography (CT) (e.g., Taylor 
et al., 1999; Cebral et al., 2000; Quarteroni et al., 
2000; Steinman et al., 2002; Zhao et al., 2002). 
Computational simulations coupled with those 
medical imaging techniques can provide the 
physicians with patient-specific information to predict 
the outcome of surgical procedures. Besides, flow 
variables that are difficult to measure in vivo can be 
calculated using real geometries. Considering the 
geometric variations, computational approach will 
offer an economical alternative to experiments on in 
vitro models. 

 
Recently, there have been some numerical studies 

on computational modeling of the patient-specific 
vascular structure and auto-regulation mechanism in 
the human brain. Cebral et al. (2000) simulated the 
blood flows in patient-specific cases taken from MRA 
images as a planning tool for neuro-surgical and 
interventional procedures. Kim et al. (2006) provided 
numerical models to simulate the collateral 
circulation in a subject-specific Circle of Willis under 
altered gravity conditions. In the present study, a 
three-dimensional model of the anatomical Circle of 
Willis is developed and several examples of the auto-
regulation mechanism are simulated to demonstrate 

the relationship between geometrical abnormalities 
and the auto-regulation performance in the cerebral 
circulation.  
 

2. Computational approach   

2.1 Blood flow model  

The blood flow is modeled applying the three-
dimensional, unsteady, incompressible Navier-Stokes 
equations. The system of equations can be written in 
tensor notation form as: 
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The shear stress tensor, ijτ  is defined as: 
 

( ) ijij Sγµτ 2=                                (3) 
 
where ( )γµ  is the apparent viscosity, ijS  is the 

mean strain-rate tensor, and γ  is the shear rate 
defined as a function of the second invariant of ijS in 
three-dimensional problems: 
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In the present study, an MPI parallel version of the 

IFANS3D code (Kim et al., 2001) was used to solve 
the incompressible Naiver-Stokes equations in three-
dimensional generalized coordinates for both steady-
state and time varying flow. The equations are 
formulated into a hyperbolic set of partial differential 
equations using the pseudocompressibility method. 
The convective terms are differenced using an 
upwind biased flux-difference splitting. The equations 
are solved using an implicit line-relaxation scheme. 
More details about these numerical schemes are 
found elsewhere (Rogers, et al., 1991; Kiris et al., 
1997; Kwak et al., 2005). 

 
The complex fluid behavior of blood was 

approximated using a Carreu-Yasuda model (Gijsen 
et al., 1999; Kim et al., 2006). This model derived in 
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Eq. (6) describes the shear thinning behavior of blood 
flows with asymptotic apparent viscosities, 0µ  and 

∞µ , at zero and infinite shear rates, respectively. 
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where the constitutive parameters of the human 

blood are given as 
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2.2 Vascular bed model 

To make the problem computationally manageable, 
minor arteries such as arterioles and capillaries need 
to be truncated. An equivalent outflow boundary 
condition should be imposed at the truncated position. 
There is an analogy between the arterial network and 
the electric circuit as shown in Fig. 4. Flow resistance 
corresponds to electric resistance, flow rate to electric 
current, and pressure drop to electric voltage. The 
truncated artery is assumed to divide into N branches 
of the same size, for instance, N equals two for 
bifurcation and three for trifurcation. Under this 
assumption, the outflow boundary condition, 
especially for pressure, has been approximated by 
utilizing the electric circuit analogy and the 
Poiseuille’s theorem (Nichols and O’Rourke, 1998; 
Cebral et al., 2000).  

 
The pressure drop in each branch can be expressed 

with the Poiseuille’s formula as 
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Fig. 4. Analogy of arterial network to electric circuit. 

where Q  is mass flow rate, p is pressure, and R is 
flow resistance. At the kth branch, its mass flow rate 
is N times of flow rate through the (k-1)st branch. 
Assuming that the flow resistance ratio f is constant 
and less than one, the total pressure difference 
between the outflow boundary 0p  and the capillary 
bed cp  is derived from the geometrical series form as  
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where subscript 0 represents the outflow boundary 

of the computational domain, A and L are sectional 
area and length of the vessel, respectively. The flow 
resistance ratio f is generally unknown and thus 
should be determined properly to avoid an unrealistic 
pressure drop at the capillary bed. The optimal value 
of f can be determined from the arteriolar auto-
regulation model in the next section. 

 
2.3 Arteriolar auto-regulation model 

The arteriolar bed varies its flow resistance 
dynamically by dilating or constricting in order to 
maintain the constant blood flow within a certain 
range of the perfusion pressure. In order to model this 
feedback mechanism in the arteriolar bed, the 
arteriolar auto-regulation (AAR) algorithm is 
presented based on the vascular bed modeling in 
Eq.(10). Using the flow rate at the nth time step, the 
outflow pressure at the next time step is updated with 
the flow resistance ratio f until the flow rate satisfies 

the reference flow rate, refQ .  
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where α  is a recovery coefficient that produces a 

reasonable autoregulatory response, and t∆  and T 
are physical time step and period of the heart beat, 
respectively. Simultaneously, the velocity components 
at the outflow boundary are extrapolated from the 
interior domain. 
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2.4 Three-dimensional reconstruction 

A three-dimensional CoW geometry was 
reconstructed from subject-specific magnetic 
resonance (MR) angiography (MRA) using an image 
segmentation technique as illustrated in Fig. 5. The 
raw MR images were converted to the RGB graphic 
file format for efficient numerical treatments. After 
extracting the segments of interest by filtering the 
voxels with intensities below a certain threshold, a 
segment outlining algorithm was used to display the 
extracted objects on each cross-sectional layer with 
very little computer memory. A commercial grid 
generation software (Gridgen) was used to create a 
three-dimensional surface database by stacking the 
two-dimensional transverse outlines. A certain degree 
of human intervention was required for the complete 
connectivity between surface domains. Consequently, 
a multi-block grid system with thirty-one domains 
was generated for this geometry as shown in Fig. 6.  

 

 
Fig. 5. Image segmentation from a magnetic resonance image 
for a subject-specific Circle of Willis [Kim et. al., 2006].  

 

 
Fig. 6. Three-dimensional reconstruction of an anatomical 
Circle of Willis configuration [Kim et. al., 2006]. 

3. Results and Discussion 

3.1 Idealized Circle of Willis model 

To provide a preliminary understanding of the auto-
regulation mechanism in the brain, an idealized Circle 
of Willis model was designed based on the 
anatomical measurements (Alpers et al., 1959; Gray, 
1918) with minor arteries truncated. A multi-block 
grid system with ten domains for this idealized 
configuration was already shown in Fig. 1. Grid 
variables were non-dimensionalized by the ICA 
diameter of 5.6 mm. The left and right ICA and the 
basilar artery were assumed to have the same inflow 
rate of 3.5 ml/s for this configuration. Inflows were 
assumed to be fully developed. The AAR algorithm 
was used to impose dynamic outflow boundary 
conditions as well as to simulate the auto-regulation 
mechanism in the brain. The Reynolds number based 
on the ICA diameter is 240. 
 

 
Fig. 7. Collateral circulation with the left internal carotid 
artery 20 % stenosed under auto-regulation. (Magnitude of 
normalized velocity in color contour.)  
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Fig. 8. Percent changes of flow rate in left middle and 
anterior cerebral arteries under auto-regulation. 



530                 Chang Sung Kim / Journal of Mechanical Science and Technology 21(2007) 525~535 
 

When one of the main arteries in the brain is 
stenosed or even missing, the distal smaller arteries 
can receive blood from the other arteries through the 
Circle of Willis. To simulate this interesting 
mechanism of collateral circulation under auto-
regulation, the left ICA is presumed 20 percent 
stenosed. This means that only 80 percent of the 
normal supply of blood is delivered to the Circle 
through the left ICA as indicated in Fig. 7. Unlike the 
balanced configuration case, the mass flux through 
the posterior communicating arteries (PCoA) and 
anterior communicating artery (ACoA) is 
considerably increased to compensate for the 
deficiency in the left middle cerebral artery (MCA). 
On the other hand, the mass flux through the proximal 
part (A1 segment) of the left anterior cerebral artery 
(ACA) is decreased by 26 percent in order to 
distribute the blood as evenly as possible. Figure 8 
shows the time-dependent auto-regulatory process 
using the AAR algorithm. The ratio of the reference 
flow rates, refQ  in Eq. (11) between MCA, PCA, 
and ACA was given as 6:4:3 in order to maintain a 
negligible mass flux through PCoA. This AAR 
algorithm was found to be robust and consistent for a 
wide range of physical time steps (dt = 0.05T to 
0.25T). The optimal value for α  was given by 8.0 
for the adequate feedback time. Within about 10 
seconds after the sudden stenosis in the left ICA, the 
left MCA and ACA have regained their initial (or 
reference) flow rates. The present simulation shows a 
good example of collateral circulation in the brain 
under auto-regulation. 

 
3.2 Anatomical circle of willis model 

In order to simulate the auto-regulating blood flow 
in a realistic configuration, an anatomical Circle of 
Willis model was reconstructed from subject-specific 
MRA images as already shown in Fig. 6. Spatial 
coordinates were normalized by the left ICA diameter 
of 5.6 mm. Total grid size was about 1.2 million node 
points. Considering the cross-sectional area, inflow 
rates through the ICA and the basilar artery were 
given as 3.5 and 2.1 ml/s, respectively. Pressure 
outflow boundary conditions were determined using 
Eq. (11) and the velocity components were 
extrapolated from the interior domain. The Reynolds 
number based on the left ICA diameter is 240.  

 
As simulated in the previous example with the 

idealized model, the left ICA is assumed to be 20 
percent stenosed and thus only 80 percent of the 
blood is delivered through the left ICA. The AAR 
algorithm was used to simulate the time-dependent 
response of auto-regulation. The ratio of the reference 
flow rates, refQ  in Eq. (11) between MCA, PCA, 
and ACA was given as 7:3:3 in order to maintain a 
negligible mass flux through the PCoA. For efficient 
simulation, time step was given as dt = 0.1T and α = 
8.0 for the adequate response.  

 
3.3 Original configuration  

The original configuration of the subject-specific 
Circle of Willis was tested to simulate time-dependent 
changes in flow rate through efferent arteries under 
auto-regulation. Figure 9 (a) shows the distribution 
and direction of flow in the Circle of Willis model 
before a sudden stenosis in the left ICA. As 
mentioned above, it was observed that both left and 
right PCoA as well as ACoA have very low mass flux 
under this normal condition. Figures 9 (b)-(d) show 
temporal flow distribution in the Circle of Willis 
model under auto-regulation. Initially, the left MCA 
has a 16 percent loss in mass flux whereas the left 
ACA has only a 5 percent loss as shown in Fig. 9 (b). 
Compared with the normal case in Fig. 9 (a), mass 
flux through the left PCoA and ACoA starts to 
increase considerably in order to supply more flux to 
the left MCA and ACA, respectively. However, the 
mass flux through the right PCoA is still very low. 
After 7 seconds, the left MCA recovers 99 percent of 
the initial amount as shown in Figure 9 (d). The time-
dependent flow rates of the left MCA and ACA after a 
sudden stenosis in the left ICA are plotted in Fig. 10. 
Within approximately 10 seconds, the left MCA and 
ACA have regained their initial (or reference) flow 
rates.  

 
3.4 No auto-regulation  

For the same event of 20 percent stenosis in the left 
ICA, a critical situation where cerebral auto-
regulation fails was also considered to simulate the 
collateral circulation without auto-regulation. With 
malfunctioning of auto-regulation mechanism, 
cerebral arterioles can neither dilate nor contract 
dynamically to accommodate temporal changes of the 
perfusion pressure. Consequently, the peripheral 
resistance maintains constant even though a sudden 
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(a) Before the sudden stenosis in the left ICA 

 

  
(b) After the sudden stenosis in the left ICA: Time = 0 sec 
 

 
(c) Time = 3 sec 

 
(d) Time = 7 sec 

Fig. 9. Collateral circulation in the Circle of Willis with a 
sudden stenosis in the left ICA. (Magnitude of normalized 
velocity in color contour.) 
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Fig. 10. Percent changes of flow rate in left middle and 
anterior cerebral arteries under auto-regulation.  

 
 

drop in mass flux happens in afferent arteries. Fig. 11 
(i.e., a snapshot after 7 seconds) makes little 
difference in the flow distribution from Fig. 9 (b). It is 
noticed that, without auto-regulation mechanism, the 
stenosis in the left ICA will cause a severe ischemic 
damage to the brain tissue in the left hemisphere. Fig. 
12 indicates that mass fluxes have increased only 1.5 
percent and 0.3 percent in the left MCA and ACA, 
respectively. Both the arteries fail to recover their 
initial mass fluxes. It is evident that proper 
functioning of auto-regulation mechanism is crucial 
to the normal cerebral circulation.  
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Fig. 12. Percent changes of flow rates without auto-regulation.  
 

 
Fig. 11. Collateral circulation without auto-regulation mecha-
nism. 

 
3.5 Missing left PCoA  

Under normal condition, mass fluxes through both 
PCoA were negligible as already seen in Fig. 9 (a). In 
the case of a sudden stenosis in the left ICA, however, 
mass flux through the left PCoA was considerably 
increased as shown in Fig. 9(d). The PCoA play an 
important role in collateral circulation under 
abnormal conditions. Thus, the effect of missing left 
PCoA on the auto-regulating flow in the Circle of 
Willis was simulated (Fig. 13). This configuration of 
interest can be representative of a string-like vessel or 
arterial occlusion of the left PCoA.  

The initial drop in mass flux was 18 percent for the 
left MCA and 5.6 percent for the left ACA as shown 
in Fig. 13 (a). After 10 seconds later, as shown in Fig. 
13 (b), the fluxes through ACoA and the right A1 

 
(a) Initial flow distribution: Time = 0 sec 

 

 
(b) Time = 10 sec 

 

 
(c) Zoomed view: Time = 10 sec 

Fig. 13. Flow redistribution in case of missing the left PCoA. 
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segment are remarkably increased to deliver more 
blood to the left ACA. There is a slight increase of 
mass flux through the right PCoA. The flow 
distribution around ACoA is zoomed in Fig. 13 (c). 
The lower A1 segment on the left has a very low mass 
flux and secondary flow pattern due to the adverse 
pressure gradient. This three-dimensional model can 
capture particular flow physics not treatable in one- 
and two-dimensional models. Figure 14 shows that 
both mass fluxes in the left MCA and ACA have 
regained about 98 percent after 10 seconds. It is 
observed that this incomplete configuration of the 
Circle can be overcome by collateral circulation 
under auto-regulation mechanism.   

 
3.6 Missing ACoA  

Much like the PCoA, the ACoA also plays an 
important role in collateral circulation under 
abnormal conditions. The effect of missing ACoA on 
the cerebral auto-regulation was simulated as shown 
in Fig. 15. For this configuration, the connecting 
channel between the left and right ACA is completely 
disappeared by eliminating the ACoA segment. This 
case has a relatively large initial drop of 15 percent in 
mass flux through the left ACA as shown in Fig. 15 
(a), while small initial drops of less than 6 percent for 
the previous cases. Since blood cannot flow to the left 
ACA through the ACoA, the distal left ACA receives 
blood only from the bifurcated A1 segments of the 
left ACA. The flow through the right PCoA changes 
its direction from the right A1 segment down to the 
right PCA as arrowed in Fig. 15 (b). The flux through 
the left PCoA is most increased to deliver more blood 
to the left MCA as well as the bifurcated A1 segments 
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Fig. 14. Percent changes of flow rate in case of missing the 
left PCoA. 

of the left ACA. Figure 16 shows that both mass 
fluxes in the left MCA and ACA fail to regain their 
initial flow rates even after 10 seconds. They have 
already reached maximum vaso-dilation and thus 
recovered only about 92 percent of the initial value. 
This case is physiologically critical where ischemic 
damages occur to the brain tissues on the front and 
left sides. It is evident that those communicating 
arteries (i.e., ACoA and PCoA) are crucial to the 
normal functioning of the Circle of Willis under auto-
regulation mechanism. 

 
 

 
(a) Initial flow distribution: Time = 0 sec 

 

 

  
(b) Time = 10 sec 

Fig. 15. Flow redistribution in case of missing the ACoA. 
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Fig. 16. Percent changes of flow rate in case of missing the 
ACoA. 

 
 

4. Conclusion 

Numerical simulations using computational fluid 
dynamics (CFD) have been performed to demonstrate 
the auto-regulation mechanism and local blood flow 
in the human brain. A three-dimensional Circle of 
Willis geometry was reconstructed from the subject-
specific magnetic resonance images (MRI) using an 
image segmentation method and grid generation 
techniques. The arteriolar auto-regulation algorithm 
based on a vascular bed model was presented to 
simulate the self-regulating redistribution of blood 
flow in the Circle of Willis as well as to impose 
multiple outflow boundary conditions. These numeri-
cal models were applied to a prototype model of the 
Circle of Willis in order to obtain a preliminary 
understanding of collateral circulation under auto-
regulation. In addition, self-regulating flows through 
the anatomical Circle of Willis model with various 
geometrical variants were simulated to investigate the 
effect of geometrical abnormalities on the redistri-
bution of blood flow in the Circle of Willis. Assuming 
the left ICA moderately stenosed, abnormal cases of 
no auto-regulation, missing left PCoA, and missing 
ACoA were simulated and compared with the original 
configuration case. It was found that the communi-
cating arteries such as PCoA and ACoA play an 
important role in proper functioning of cerebral auto-
regulation mechanism. The present numerical models 
combining CFD and MRI are considered to provide 
the patient-specific information for surgical and inter-
ventional procedures as a predictive surgery tool.  
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